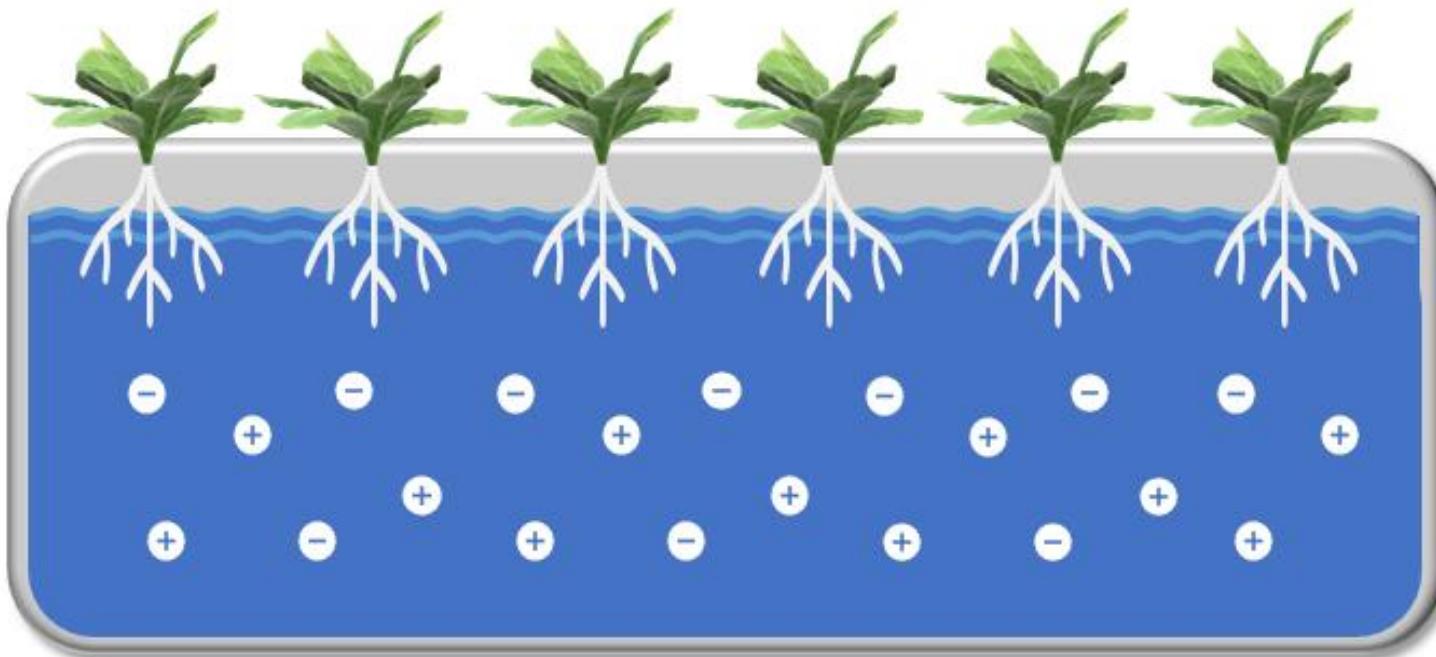


Module 3

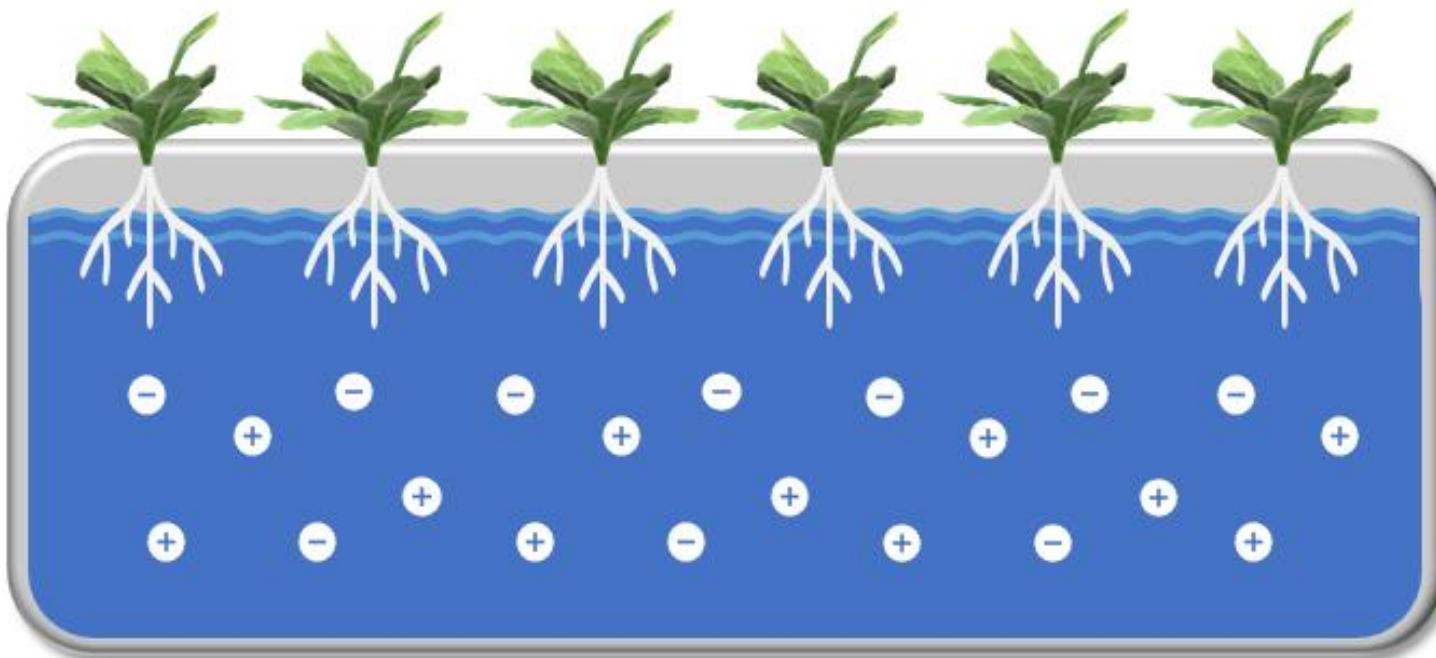
Hydroponic Nutrient Solutions


2026 Greenhouse Hydroponic Tomato Workshop with Dr. Triston Hooks

Outline

1. EC and pH
2. Nutrient Solution Recipes
3. Concentrated Stocks
4. Fertigation for Tomatoes

Hydroponic Nutrient Solutions


Review

- Hydroponics uses a complete nutrient solution which contains water and all essential elements
- An essential element is required for a plant to grow and complete its lifecycle

Hydroponic Nutrient Solutions

Review

- 13* essential elements:
 - 6 Macro (N P K Ca Mg S)
 - 7 Micro (Fe Cl B Zn Mn Cu Mo)
- Dissolved in water as inorganic ions for plant roots to uptake

Hydroponic Nutrient Solutions

Other Essential Elements

- But there are a total of 17 essential elements for plants
- H, O, C, and Ni do not need to be added to a nutrient solution
- Other elements being considered (Co, Si, Se)...

28

Ni

Nickel

Transition Metal

Nickel Element Page

27

Co

Cobalt

Transition Metal

Cobalt Element Page

14

Si

Silicon

Metalloid

Silicon Element Page

34

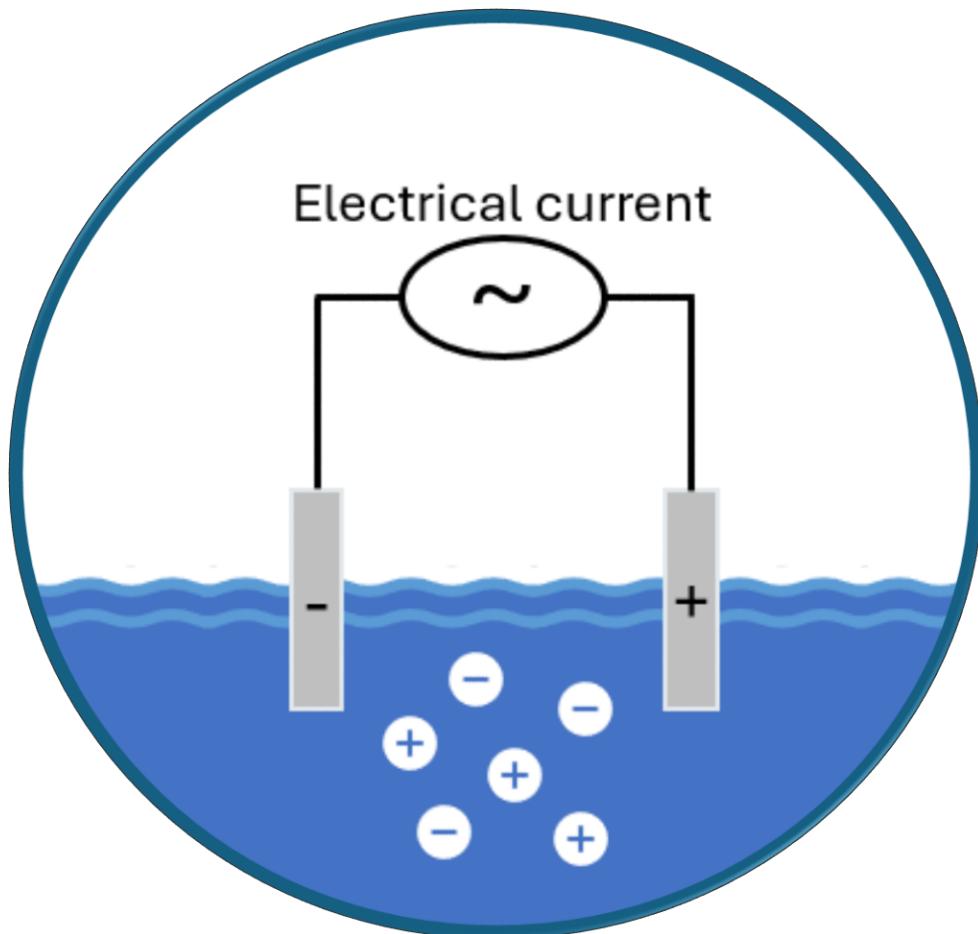
Se

Selenium

Nonmetal

Selenium Element Page

Hydroponic Nutrient Solutions


EC and pH

- You can measure the ions in a hydroponic nutrient solution using an electrical conductivity (EC) and pH meter
 - EC measures the total ion concentration
 - pH measures H^+ concentration

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

EC and pH

- An EC meter has electrodes that measure the conductance in a solution (mS/cm)
- The more ions in solution, the greater the conductance
 - Rain water: 0.0 mS/cm
 - Tap water: ~0.3
 - Brackish water: >3.0
 - Seawater: ~50.0

Hydroponic Nutrient Solutions

Example:	Hydroponic Nutrient Solution	Salty Water	Are these solutions different?
EC	1.2 mS/cm	1.2 mS/cm	<i>They appear to be the same!</i>
Specific Ions:	N, P, K, etc...	Na, Cl (table salt)	<i>But, they are very different!</i>

EC and pH

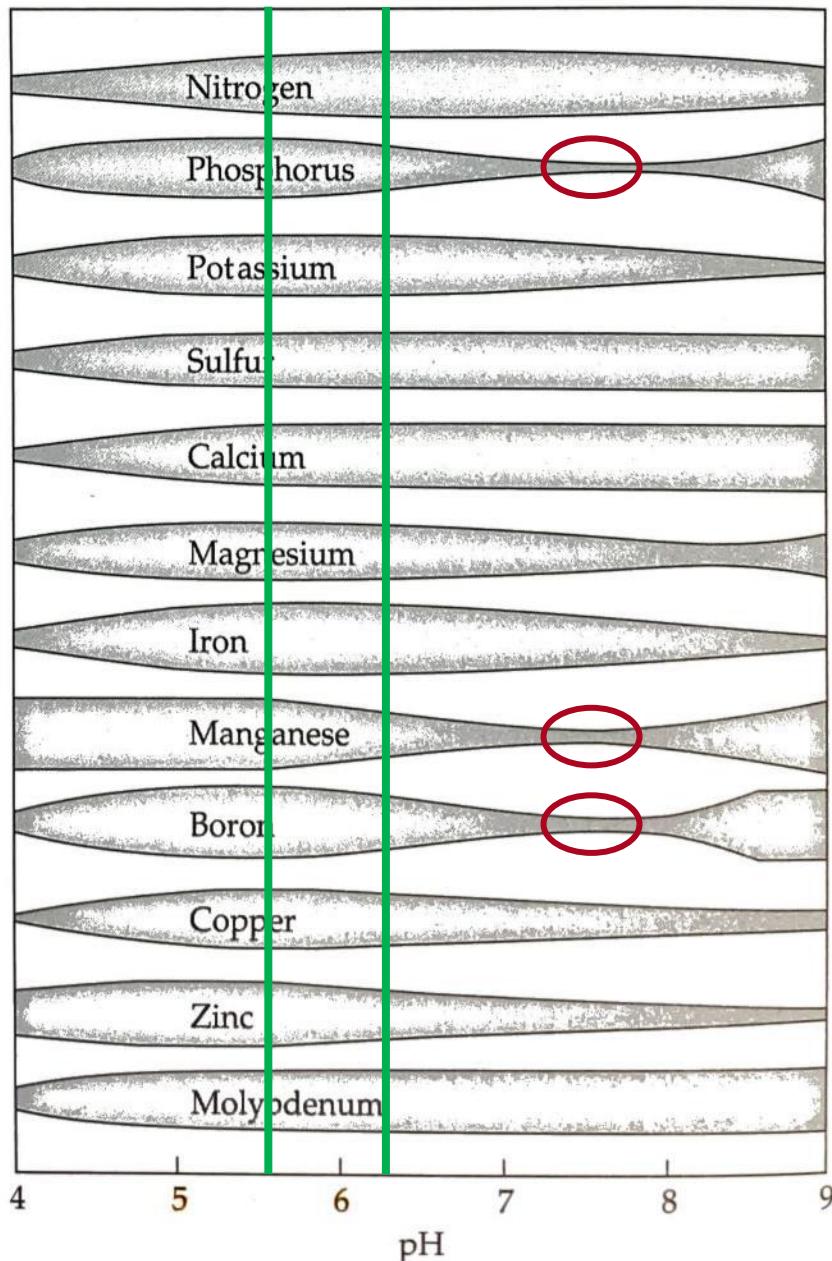
- An EC range of 1.0 – 2.0 mS/cm is commonly used in hydroponic nutrient solutions
- EC is a quick and easy tool to gauge the concentration of a nutrient solution
- EC does not tell you about specific ions!

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

EC and pH


- pH measures H^+ concentration to determine the acidity (more H^+) or basicity (less H^+) of a solution
- pH ranges from 0-13 and is logarithmic (10x)
 - 7 is neutral (e.g pure water)
 - <7 is acidic (e.g vinegar)
 - >7 is basic (e.g bleach)

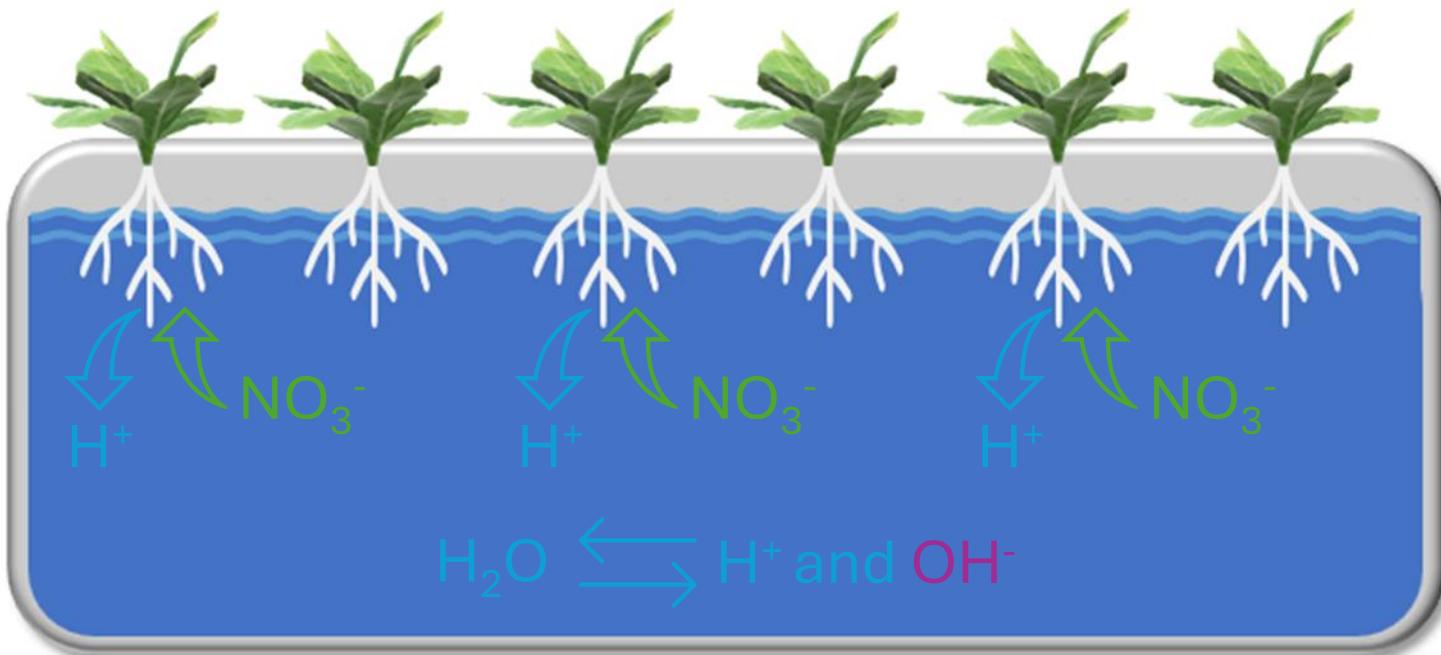
THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

EC and pH

- pH influences nutrient availability for plant root uptake
- P, Mn, and B lockout can occur if pH is too high (~7.5)
- A pH range of 5.6 - 6.3 is commonly used in hydroponic nutrient solutions


THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

EC and pH

- Therefore, it is common practice to regularly lower the pH by slowly dosing an acid
- However, the pH of a hydroponic nutrient solution is in flux...
 - pH can increase if more water is added
 - pH can decrease due to ion uptake by plant roots

Hydroponic nutrient solutions have a low buffer capacity which makes pH flux more common

Hydroponic Nutrient Solutions

Use personal protective equipment (PPE) when handling acids!

General Hydroponics

EC and pH

- Recommended acids for use in hydroponic nutrient solutions:
 - Nitric acid (source of N)
 - Phosphoric acid (source of P)
 - Citric acid (weak but safer handling)

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hoagland's Solution Recipe

Element	ppm (mg/L)
Macros	N 210
	P 31
	K 235
	Ca 200
	Mg 49
	S 64
Micros	Cl 0.6
	Fe 5.0
	Mn 0.5
	B 0.5
	Zn 0.05
	Cu 0.02
	Mo 0.017
TDS:	796
EC (mS/cm):	1.2

Nutrient Solution Recipes

- A recipe refers to the composition of macro and micro nutrients in a hydroponic nutrient solution
- Hoagland's Solution recipe with essential element concentrations (ppm or mg/L)
- $TDS / 640 = EC \text{ (mS/cm)}^*$

Hydroponic Nutrient Solutions

General Hydroponics

Nutrient Solution Recipes

- Hydroponic nutrient solution recipes can be crop, growth, and tissue dependent
- E.g. the recipe to grow **lettuce** is different from the recipe to grow **tomato**
- With hydroponics you can fine-tune a recipe to grow better and waste less!

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- Leafy greens like lettuce require a single recipe because they grow fast and are harvested before they flower and set seed
- However, a half-strength (1/2x) nutrient solution is commonly used for germination and seedling establishment

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- CEAC hydroponic leafy green nutrient solution recipe:
EC 1.5 mS/cm and pH 5.6
- Includes half-strength (1/2x) for propagation (~2 weeks)
- Full-strength (1x) for production (~3 weeks)

CEAC Hydroponic Leafy Green Recipe		
	1/2x (Half-strength)	1x (Full-strength)
Element	Week 0 - 2 (Propagation)	Week 2 - 5+ (Production)
	ppm (mg/L)	ppm (mg/L)
Macros		
N	75	150
P	15	30
K	100	200
Ca	80	160
Mg	25	50
S	35	70
Micros		
Cl	15	30
Fe	1.0	2.0
Mn	0.23	0.45
B	0.18	0.35
Zn	0.15	0.30
Cu	0.03	0.05
Mo	0.03	0.05
TDS:	347	693
EC (mS/cm):	0.5	1.1
EC w/ tap water:	0.9	1.5
pH (setpoint):	6.0	5.6

Hooks

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- *Why use a half-strength (1/2x) nutrient solution for propagation?*
- The technique is to incrementally increase the strength (EC) of the nutrient solution as the plant matures to prevent osmotic shock and minimize waste

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- For larger flowering and fruiting crops like tomato, it is common to use more than one recipe to support distinct growth stages and plant tissue

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- The CEAC hydroponic tomato nutrient solution has three distinct recipes based on different growth stages:
 - Vegetative (leaves and roots)
 - Generative (flowers and fruit)
 - Balanced (mature and continuously producing)

CEAC Hydroponic Tomato Recipes					
	1/2x Propagation (Week 0 - 4)	1. Vegetative (Week 4 - 8)	2. Generative (Week 8 - 12)	3. Balanced (Week 12+)	
Element	ppm (mg/L)	ppm (mg/L)	ppm (mg/L)	ppm (mg/L)	
Macros	N	75	150	170	190
	P	20	40	47	47
	K	90	180	270	350
	Ca	80	160	180	200
	Mg	30	60	65	70
	S	45	90	120	140
Micros	Cl	15	30	50	60
	Fe	1.0	2.0	2.5	3.0
	Mn	0.35	0.70	0.70	0.70
	B	0.20	0.40	0.40	0.40
	Zn	0.17	0.33	0.33	0.33
	Cu	0.03	0.06	0.06	0.06
	Mo	0.03	0.06	0.06	0.06
	TDS:	357	714	906	1062
EC (mS/cm):	0.6	1.1	1.4	1.7	
EC w/ tap water:	1.0	1.5	1.9	2.2	
pH (setpoint):	6.0	6.0	5.6	6.0	

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- CEAC Tomato Recipe 1 favors vegetative growth when the plants are young and encourages root and shoot growth and establishment
 - N, P, and Ca are emphasized
 - Mild EC (1.5)
 - Mild pH (6.0)

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

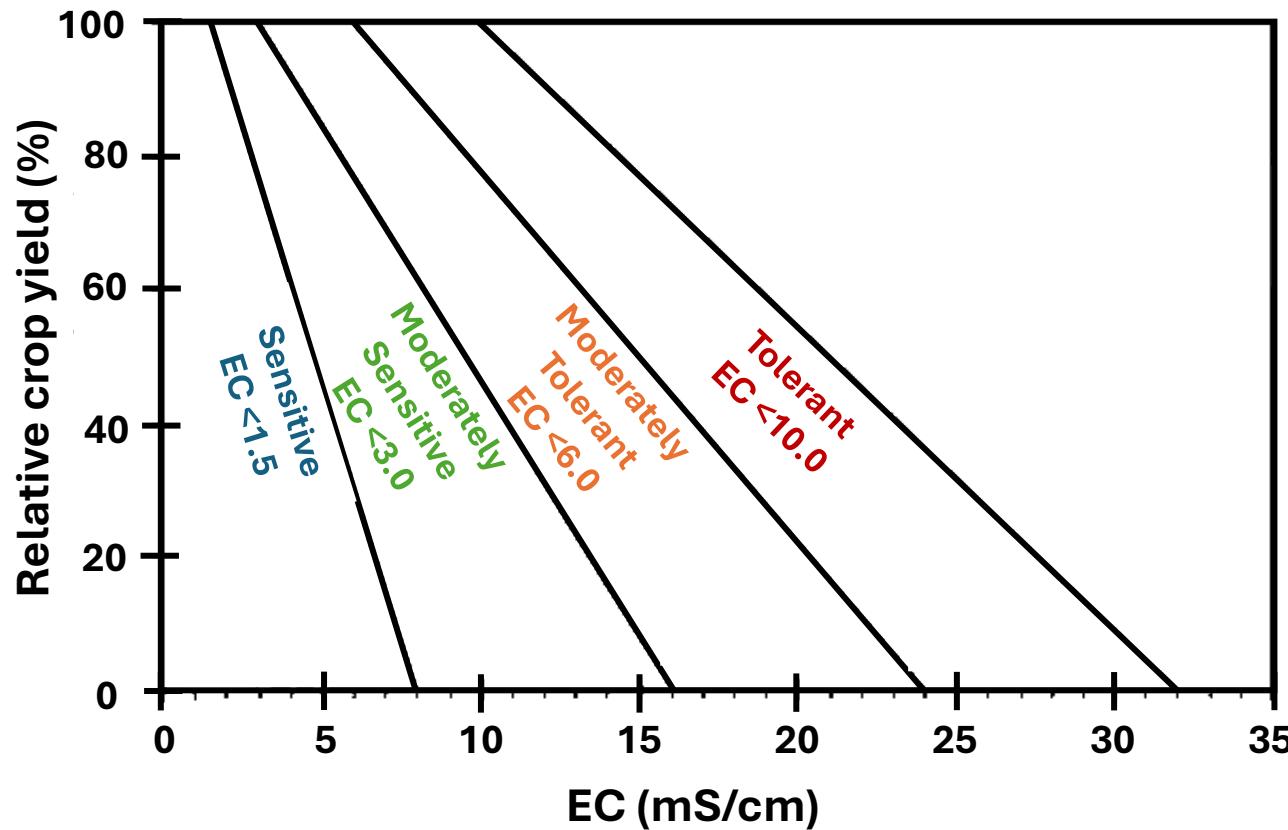
Nutrient Solution Recipes

- CEAC Tomato Recipe 2 favors generative growth when the plants are intermediate size to encourage lots of flower production and fruit setting
 - P, K, and Ca are emphasized
 - Moderate EC (1.9)
 - Lower pH (5.6)

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- CEAC Tomato Recipe 3 supports mature plants at full production for sustained balance between vegetative and generative growth
 - N, K, Ca, and Fe are emphasized
 - Higher EC (2.2)
 - Balanced pH (6.0)


THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Nutrient Solution Recipes

- *How do you determine recipes for different crops?*
- Recipes can be adjusted using EC based on crop salinity tolerance
 - Strawberries ~1.0 EC
 - Pepper ~1.5 EC
 - Tomato and Cucumber ~2.4 EC

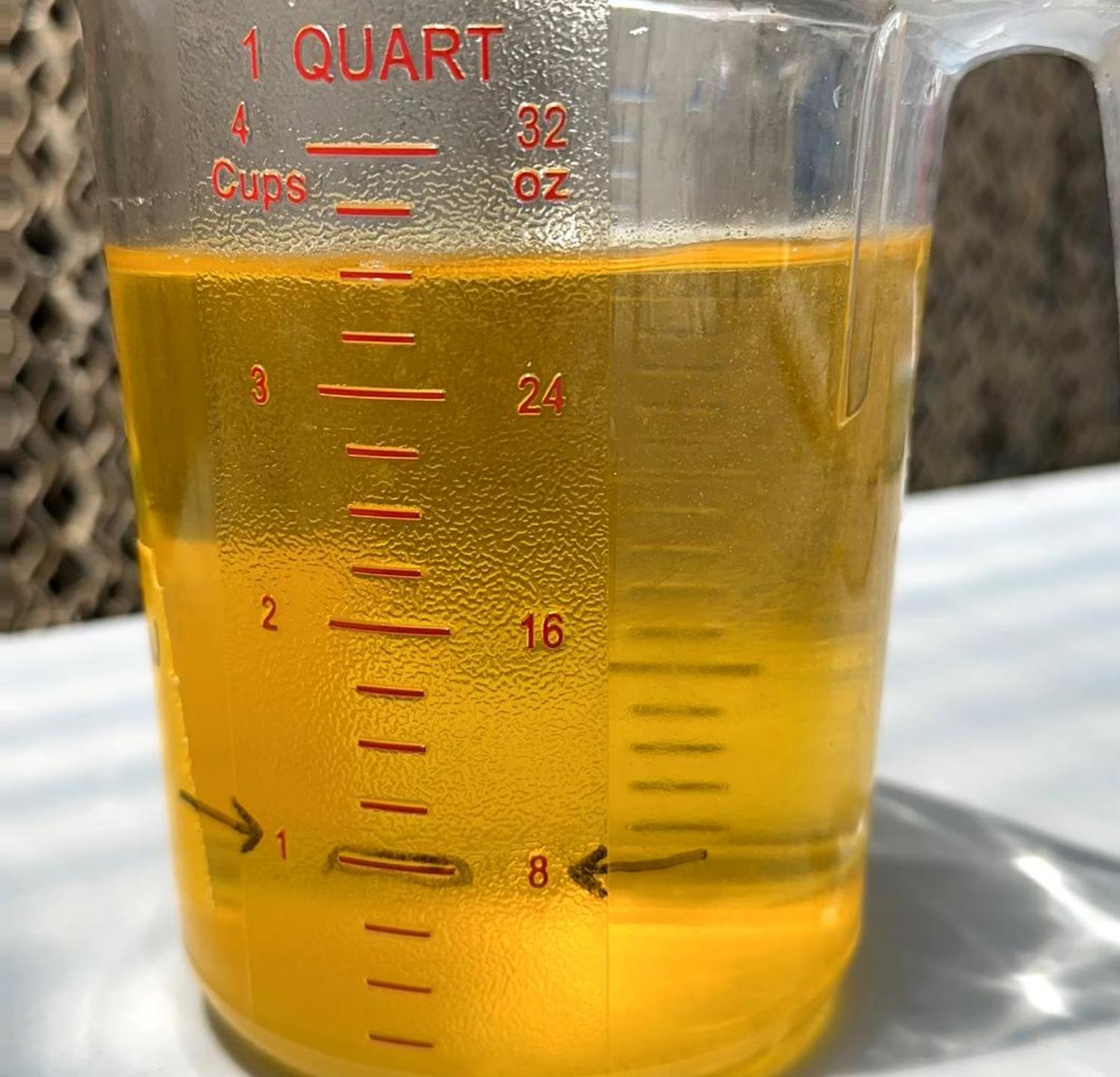
FIG. 1. Divisions for classifying crop tolerance to salinity

Hydroponic Nutrient Solutions

Concentrated Stocks

- Typically, a nutrient solution is not prepared directly in a hydroponic system reservoir
- Instead, concentrated liquid stocks are prepared
- Stocks are practical and maintain a safe separation between the plants and supply of concentrated nutrient solution

Hydroponic Nutrient Solutions


Concentrated Stocks

- Nutrient solution stocks are commonly prepared in a set of three:
 - **Stock A** can include P, K, Mg, S, and most micros (cloudy appearance)
 - **Stock B** can include N, K, Ca, Cl, Fe (rust/red color)
 - **Stock C** is used for acid

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Concentrated Stocks

- *Why separate the stocks?*
- For greater solubility and concentrations, up to 200x
- When concentrated, calcium must be separated from sulfates, to prevent the precipitation of gypsum crystals (CaSO_4)

Hydroponic Nutrient Solutions

Concentrated Stocks

- Stocks can range in volume and concentration, depending on the application
- 5-gal (18.9L) stocks at 100-150x are common for small scale systems
- 100+ gal (379+ L) stocks at 200x are common for medium to large scale systems


THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Concentrated Stocks

- *How do you make stocks?*
- You can buy concentrated nutrient solution in wet or dry forms
- But it is recommended to prepare stocks using individual dry fertilizer salts

Coastal Fertilizer, Hort Americas

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Concentrated Stocks

- Dry fertilizer salts can be mixed with water to prepare concentrated stocks
- Individual salts can be more economical, versatile, and allow for custom recipes

Hydroponic Nutrient Solutions

Stock	Fertilizer Salt	Chemical Formula	Element
Stock A	Potassium phosphate	KH_2PO_4	K, P
	Potassium sulfate	K_2SO_4	K, S
	Magnesium sulfate	$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	Mg, S
	Manganese sulfate	$\text{MnSO}_4 \cdot 4\text{H}_2\text{O}$	Mn
	Boric acid	H_3BO_3	B
	Zinc sulfate	$\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$	Zn
	Copper sulfate	$\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$	Cu
	Sodium Molybdate	MoNa_2O_4	Mo
Stock B	Potassium nitrate	KNO_3	K, N
	Calcium nitrate	$\text{CaH}_4\text{N}_4\text{O}_9$	Ca, N
	Calcium chloride	$\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$	Ca, Cl
	Iron chelate	EDDHA 6%	Fe

Concentrated Stocks

- Here is a list of recommended dry fertilizer salts that can be used to prepare hydroponic nutrient solution stocks
- You need to calculate the mass of each fertilizer salt!
- See your hydroponic nutrient solution calculation sheet provided!

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

TGH: Mix in 80-Gal (303L) Stocks @200x Concentration

	Tomato Recipe:	1. Vegetative Mass (g)	2. Generative Mass (g)	3. Balanced Mass (g)
Stock	Fertilizer Salt			
Stock A	KH_2PO_4	10650	12514	13313
	K_2SO_4	1200	7600	5000
	$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	30728	36873	43019
	$\text{MnSO}_4 \cdot 4\text{H}_2\text{O}$	172	172	172
	H_3BO_3	139	139	139
	$\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$	88	88	88
	$\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$	14	14	14
	MoNa_2O_4	8	8	8
Stock B	KNO_3	16800	19000	24600
	$\text{CaH}_4\text{N}_2\text{O}_3$	23700	25100	29600
	$\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$	2200	4800	6000
	EDDHA 6%	2020	2525	3030

Concentrated Stocks

- Here are the calculated masses for each fertilizer salt needed to prepare concentrated stocks
- Note, masses of Stock A and B are relatively similar for solubility

Hydroponic Nutrient Solutions

Concentrated Stocks

- You know why concentrated stocks are important
- You know how they are setup, typically as stocks A, B, and C
- You know they are prepared using dry fertilizer salts
- *But how do you actually make them?*

Hydroponic Nutrient Solutions

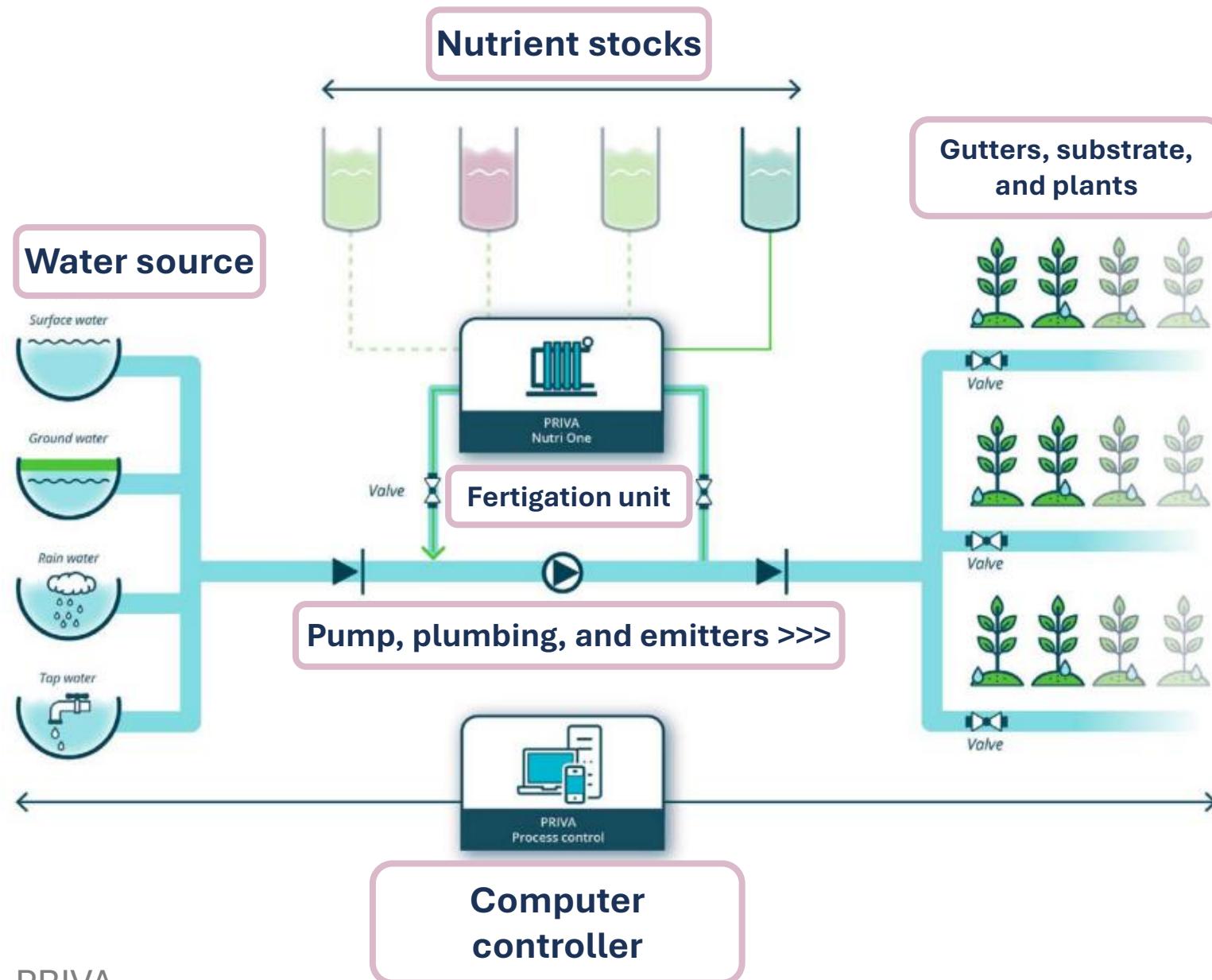
Concentrated Stocks

- How to prepare hydroponic nutrient solution stocks:
 1. Wear appropriate PPE!
 2. Weigh the calculated mass of dry fertilizer salts
 3. Add water to fill the empty stocks no more than ~2/3
 4. Slowly pour in the dry fertilizer salts
 5. **Mix thoroughly!**
 6. Top-off with water

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Concentrated Stocks

- Salts can be difficult to completely dissolve in the stock solution at high concentrations (~200x)
- Warm water, aeration, and constant mixing can help
- Can be done by hand, but a mixing pump is recommended!


Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- *What's next?*
- Concentrated stocks are diluted and delivered to the plants = Fertigation
- For hydroponics, fertigation is always used in the form of a complete nutrient solution

Fertigation for Tomatoes

Overview of hydroponic drip systems that utilize fertigation:

- Water source
- Nutrient stocks
- Fertigation unit
- Pump, plumbing, and emitters
- Gutters, substrate, and plants
- Computer controller

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- An example of a fertigation unit for a hydroponic drip system
- The fertigation unit mixes water and stocks to make a nutrient solution based on EC and pH setpoints, and then delivers it to the plants in “shots”

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Fertigation for Tomatoes

- The concentrated stocks can be dosed via injectors, peristaltic pumps, or Dosatrons
- Stocks A and B must be dosed equally to the fertigation unit for accurate mixing of your nutrient solution recipe!

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- Pressure compensating emitters are used for uniform distribution of nutrient solution to each plant throughout the growing area
- For vine crops, a common emitter rate is 1 GPH (gallon per hour) or ~4 LPH

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- *Nutrient solution shots: How much and how often?*
- Rule of thumb, “A little, but often”
- Each shot lasts 3 min @ 1 GPH = 190 mL per plant
- Moves water, nutrients, and dissolved oxygen through the substrate for the plant roots

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- The frequency of fertigation shots can be controlled by a timer, moisture, or light sensor
- The goal is to efficiently deliver nutrient solution to the plants for optimum growth
- Example: Fertigation shot every 30 min from an hour after sunrise to an hour before sunset*

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Village Farms

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- Drip hydroponic systems were developed to support larger crops with extended production cycles such as tomato
- Larger substrate and minimal solution characterize these systems

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- Gutters are the primary growing unit in a drip system to support larger substrate slabs
- Gutters are raised for ergonomics and decline (~1%) to collect solution drainage
- Drip lines with stakes are used to “drip” solution to the substrate (one per plant)

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Indigeponics

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

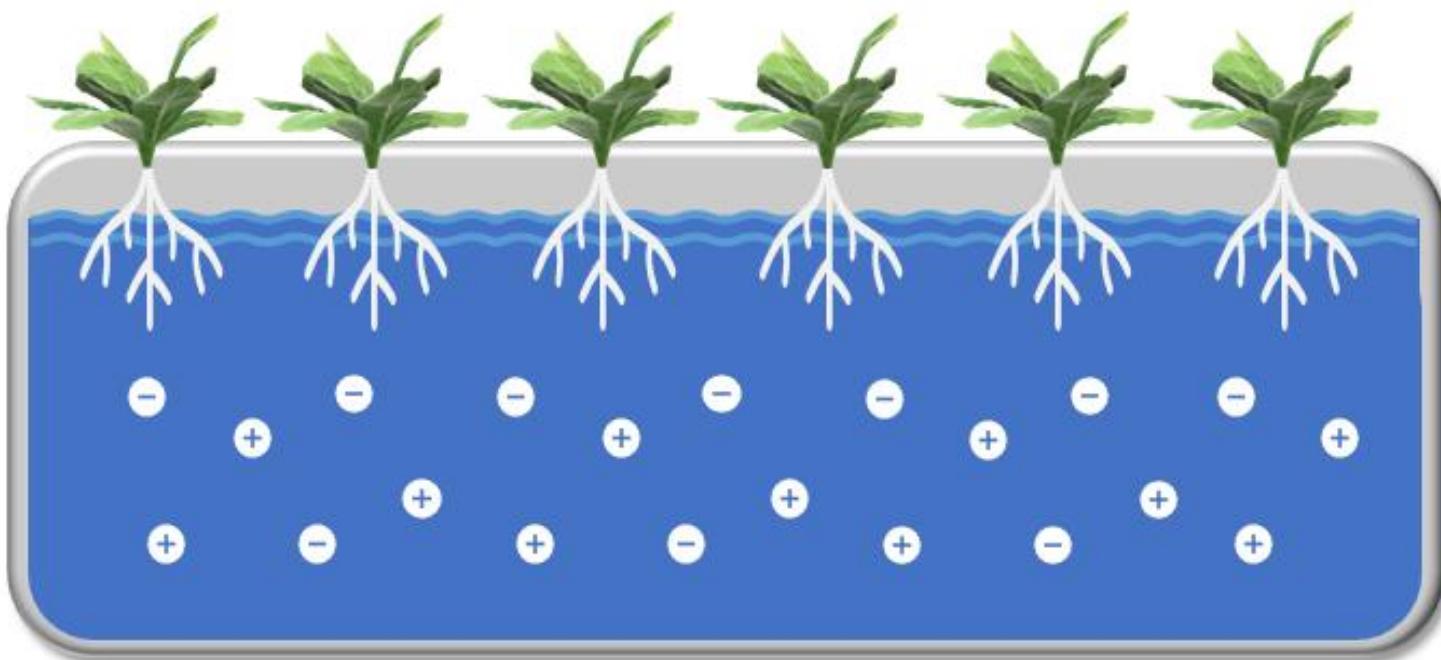
- Drip system variants can utilize pots, bags, or buckets to accommodate various substrate material
- Small-scale drip system variants can also simply use a recirculating reservoir of nutrient solution

THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING
Controlled Environment
Agriculture Center

Hydroponic Nutrient Solutions

Fertigation for Tomatoes

- Drip systems are versatile and can grow a variety of exciting crops including tomato, pepper, cucumber, melons, squash, eggplant, cut flowers, hops, cannabis, and more!


THE UNIVERSITY OF ARIZONA
BIOSYSTEMS ENGINEERING

Controlled Environment
Agriculture Center

Module 3

Hydroponic Nutrient Solutions

2026 Greenhouse Hydroponic Tomato Workshop with Dr. Triston Hooks

References

- Resh, 2022, *Hydroponic Food Production*
- Epstein and Bloom, 2004, *Mineral Nutrition of Plants*
- Mass and Grattan, 1999, Annex 1. Crop salt tolerance data
- Hooks, 2022-2025, UA-CEAC Teaching Greenhouse *unpublished data*